160 research outputs found

    Temporal evolution of continental lithospheric strength in actively deforming regions,GSA

    Get PDF
    ABSTRACT It has been agreed for nearly a century that a strong, loadbearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions, and store elastic strain to generate earthquakes. However, the depth and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation, reservoir loading, glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ~10 0 to 10 3 yr) and glacio-isostatic adjustment (GIA, ~10 3 to 10 4 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ~10 6 -10 7 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile substrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic setting of the process being investigated

    Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake

    Get PDF
    International audience[1] Mantle rheology is one of the essential, yet least understood, material properties of our planet, controlling the dynamic processes inside the Earth's mantle and the Earth's response to various forces. With the advent of GRACE satellite gravity, measurements of mass displacements associated with many processes are now available. In the case of mass displacements related to postseismic deformation, these data may provide new constraints on the mantle rheology. We consider the postseismic deformation due to the M w = 9.2 Sumatra 26 December 2004 and M w = 8.7 Nias 28 March 2005 earthquakes. Applying wavelet analyses to enhance those local signals in the GRACE time varying geoids up to September 2007, we detect a clear postseismic gravity signal. We supplement these gravity variations with GPS measurements of postseismic crustal displacements to constrain postseismic relaxation processes throughout the upper mantle. The observed GPS displacements and gravity variations are well explained by a model of visco-elastic relaxation plus a small amount of afterslip at the downdip extension of the coseismically ruptured fault planes. Our model uses a 60 km thick elastic layer above a viscoelastic asthenosphere with Burgers body rheology. The mantle below depth 220 km has a Maxwell rheology. Assuming a low transient viscosity in the 60–220 km depth range, the GRACE data are best explained by a constant steady state viscosity throughout the ductile portion of the upper mantle (e.g., 60–660 km). This suggests that the localization of relatively low viscosity in the asthenosphere is chiefly in the transient viscosity rather than the steady state viscosity. We find a 8.10 18 Pa s mantle viscosity in the 220–660 km depth range. This may indicate a transient response of the upper mantle to the high amount of stress released by the earthquakes. To fit the remaining misfit to the GRACE data, larger at the smaller spatial scales, cumulative afterslip of about 75 cm at depth should be added over the period spanned by the GRACE models. It produces only small crustal displacements. Our results confirm that satellite gravity data are an essential complement to ground geodetic and geophysical networks in order to understand the seismic cycle and the Earth's inner structure

    Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake

    Full text link
    The deformation at the core-mantle boundary produced by the 2004 Sumatra earthquake is investigated by means of a semi-analytic theoretical model of global coseismic and postseismic deformation, predicting a millimetric coseismic perturbation over a large portion of the core-mantle boundary. Spectral features of such deformations are analysed and discussed. The time-dependent postseismic evolution of the elliptical part of the gravity field (J2) is also computed for different asthenosphere viscosity models. Our results show that, for asthenospheric viscosities smaller than 10^18 Pa s, the postseismic J2 variation in the next years is expected to leave a detectable signal in geodetic observations.Comment: 14 pages, 8 figures, 1 table. It will appear in Geophysical Journal Internationa

    Dislocation Creep of Olivine: Backstress Evolution Controls Transient Creep at High Temperatures

    Get PDF
    Transient creep occurs during geodynamic processes that impose stress changes on rocks at high temperatures. The transient is manifested as evolution in the viscosity of the rocks until steady-state flow is achieved. Although several phenomenological models of transient creep in rocks have been proposed, the dominant microphysical processes that control such behavior remain poorly constrained. To identify the intragranular processes that contribute to transient creep of olivine, we performed stress-reduction tests on single crystals of olivine at temperatures of 1250–1300°C. In these experiments, samples undergo time‐dependent reverse strain after the stress reduction. The magnitude of reverse strain is ~10-3 and increases with increasing magnitude of the stress reduction. High-angular resolution electron backscatter diffraction analyses of deformed material reveal lattice curvature and heterogeneous stresses associated with the dominant slip system. The mechanical and microstructural data are consistent with transient creep of the single crystals arising from accumulation and release of backstresses among dislocations. These results allow the dislocation‐glide component of creep at high temperatures to be isolated, and we use these data to calibrate a flow law for olivine to describe the glide component of creep over a wide temperature range. We argue that this flow law can be used to estimate both transient creep and steady‐state viscosities of olivine, with the transient evolution controlled by the evolution of the backstress. This model is able to predict variability in the style of transient (normal versus inverse) and the load-relaxation response observed in previous work.LH and DW acknowledge support from the Natural Environment Research Council, grant NE/M000966/1, LH and CT acknowledge support from the Natural Environment Research Council, grant 1710DG008/JC4, and DW acknowledges support from the Netherlands Organisation for Scientific Research, User Support Programme Space Research, grant ALWGO.2018.038, and startup funds from Utrecht University. LH recognizes funds used to develop the uniaxial apparatus from the John Fell Fund at the University of Oxford

    Erratum to: Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    Get PDF
    Acknowledgments This paper is strongly relying upon the work of many colleagues and collaborators to whom we are greatly thankful, in particular: Carlo Doglioni, Gillian Foulger, Vahid Gholami, Hossein Hamzehloo, Volodya Kossobokov, Cristina La Mura, Anatoly Levshin, Andrea Magrin, Antonella Peresan, Federica Riguzzi, Franco Vaccari, Peter Varga, Tatiana Yanovskaya. Financial support from PRIN 2010-2011 and RITMARE projects, funded by Italian Ministry of University and Research, is gratefully acknowledged. In addition, Fig. 3 should be updated by new one as below

    Aftershock Sequences Modeled with 3-D Stress Heterogeneity and Rate-State Seismicity Equations: Implications for Crustal Stress Estimation

    Get PDF
    In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (≤10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress
    corecore